На главную страницу

Программа курса "Эконометрика"

Лектор - Канторович Григорий Гельмутович

I. Предмет эконометрики. Методология эконометрического исследования. Математическая и эконометрическая модель. Три типа экономических данных: временные ряды, перекрестные (cross-section) данные, панельные данные.

II. Основные понятия теории вероятностей. Случайные события и случайные величины. Функции распределения и плотности распределения. Основные свойства функций распределения. Совместное распределение нескольких случайных величин. Условное распределение и его свойства. Функция плотности распределения независимых в совокупности случайных величин.

III. Характеристики распределений случайных величин (математическое ожидание, дисперсия, ковариация, коэффициент корреляции). Свойства математического ожидания и дисперсии. Условное математическое ожидание.

IV. Нормальное распределение и связанные с ним хи-квадрат распределение, распределения Стьюдента и Снедекора-Фишера. Их основные свойства. Работа с таблицами распределений.

V. Генеральная совокупность и выборка. Выборочное распределение и выборочные характеристики (среднее, дисперсия, ковариация, коэффициент корреляции). Корреляционная связь.

VI. Статистическое оценивание. Точечные оценки. Линейность, несмещенность, эффективность и состоятельность оценок. Свойства выборочных характеристик, как точечных оценок. Интервальные оценки, доверительный интервал. Доверительные интервалы для математического ожидания и дисперсии, оцениваемых по случайной выборке из нормального распределения.

VII. Статистические выводы и проверка статистических гипотез. Прямая и альтернативная гипотезы. Критическое множество и решающее правило. Ошибки 1-го и 2-го рода. Мощность статистического критерия. Уровень значимости и проверка гипотезы. Двух- и односторонние критерии. Проверка статистических гипотез при помощи таблиц распределений (классический подход) и рассчитываемых компьютером точных значений уровня значимости (p-value).

VIII. Линейная регрессионная модель для случая одной объясняющей переменной. Теоретическая и выборочная регрессии. Экономическая интерпретация случайной составляющей. Линейность регрессии по переменным и параметрам.

IX. Задача оценивания параметров. Метод наименьших квадратов (МНК), как математический прием, минимизирующий сумму квадратов отклонений в направлении оси у. Система нормальных уравнений и ее решение. Свойства оценок параметров, полученных по МНК: равенство нулю суммы остатков, прохождение найденной линии через точку с координатами , ортогональность остатков значениям независимой переменной и оцененным значениям зависимой переменой. Геометрическая интерпретация метода наименьших квадратов.

X. Разложение суммы квадратов отклонений наблюдаемых значений зависимой переменной от ее выборочного среднего. Дисперсионный анализ. Геометрическая интерпретация (теорема Пифагора). Степень соответствия линии регрессии имеющимся данным. Коэффициент детерминации и его свойства. Связь между коэффициентом детерминации и коэффициентом корреляции. Выражение коэффициента наклона уравнения регрессии через коэффициент корреляции и ковариацию зависимой и независимой переменных.

XI. Классическая линейная регрессия для случая одной объясняющей переменной. Статистические характеристики (математическое ожидание, дисперсия и ковариация) оценок параметров. Теорема Гаусса-Маркова (с доказательством).

XII. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Доверительные интервалы оценок параметров и проверка гипотез о их значимости (t-тест). Проверка адекватности регрессии (F-тест). Прогнозирование по регрессионной модели и его точность. Доверительный интервал для прогнозных значений. Зависимость точности от горизонта прогноза.

ХIII. Методология эконометрического исследования на примере линейной регрессии для случая одной объясняющей переменной. Особенности представления результатов регрессионного анализа в одном из основных программных пакетов (например в Excel). Таблица ANOVA. Применение p-value для проверки значимости коэффициентов регрессии и F-significance - для проверки адекватности регрессии.

XIV. Особенности регрессии, проходящей через начало координат (без свободного члена). Выражения для вычисления коэффициента наклона и его дисперсии при отсутствии свободного члена. Неприменимость коэффициента детерминации для оценки качества подгонки регрессии. Влияние изменения масштаба измерения переменных на оценки коэффициентов регрессии и их дисперсий. Регрессия в центрированных и нормированных переменных.

XV. Множественная линейная регрессия в скалярной и векторной формах. Метод наименьших квадратов и его геометрическая интерпретация в многомерном случае. Система нормальных уравнений. Матричное выражение для вектора оценок коэффициентов регрессии (без вывода). Ковариационная матрица оценок коэффициентов регрессии. Несмещенная оценка дисперсии случайного члена (без доказательства). Оценка ковариационной матрицы оценок коэффициентов регрессии.

XVI. Теорема Гаусса-Маркова для множественной линейной регрессии (без доказательства эффективности оценок). Случай нормальной случайной составляющей. Проверка значимости коэффициентов и адекватности регрессии для множественной линейной регрессионной модели. Коэффициент множественной детерминации и коэффициент множественной детерминации, скорректированный на число степеней свободы. Связь между коэффициентом множественной детерминации и F-отношением.

XVII. Построение множественной линейной регрессии с ограничениями на параметры (рассмотрение конкретных примеров без вывода общей формулы). Формулировка общей линейной гипотезы (наличия нескольких линейных соотношений между параметрами теоретической регрессии). Проверка общей линейной гипотезы, как проверка статистической значимости увеличения остаточной суммы квадратов в результате введения ограничений (без доказательства). F-статистика для ее проверки.

XVIII. Функциональные преобразования переменных в линейной регрессионной модели. Линейная в логарифмах регрессия, как модель с постоянной эластичностью. Оценка производственной функции Кобба-Дугласа. Модель с постоянными темпами роста (полулогарифмическая модель). Функциональные преобразования при построении кривых Филлипса и Энгеля. Полиномиальная регрессия. Выбор между линейной и линейной в логарифмах моделью, непригодность для этого коэффициента множественной детерминации. Тест Бокса-Кокса (Box-Сох test). Преобразование Зарембки (Zarembka scaling).

XIX. Использование качественных объясняющих переменных. Фиктивные (dummy) переменные в множественной линейной регрессии. Влияние выбора базовой категории на интерпретацию коэффициентов регрессии. Фиктивные переменные для дифференциации коэффициентов наклона. Сравнение двух регрессии с помощью фиктивных переменных и теста Чау (Chow). Эквивалентность этих подходов. Анализ сезонности с помощью фиктивных переменных.

XX. Метод максимального правдоподобия. Свойства оценок метода максимального правдоподобия. Соотношение между оценками коэффициентов линейной регрессии, полученными методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей. Свойства оценки дисперсии случайной составляющей, полученной методом максимального правдоподобия.

XXI. Мультиколлинеарность данных. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Теоретические последствия мультиколлинеарности для оценок параметров регрессионной модели. Нестабильность оценок параметров регрессии и их дисперсий при малых изменениях исходных данных в случае мультиколлинеарности. Признаки наличия мультиколлинеарности. Показатели степени мультиколлинеарности. Вспомогательные регрессии и показатель "вздутия" дисперсии (VIF). Индекс обусловленности информационной матрицы (bad conditioned index - BCI), как показатель степени мультиколлинеарности. Методы борьбы с мультиколлинеарностью. Переспецификация модели (функциональные преобразования переменных). Исключение объясняющей переменной, линейно связанной с остальными. Подход Тэйла (Theil H.) к устранению мультиколлинеарности в панельных данных. Понятие о методе главных компонент, как средстве борьбы с мультиколлинеарностью данных.

XXII. Нарушение гипотезы о гомоскедастичности. Экономические причины гетероскедастичности. Последствия гетероскедастичности для оценок коэффициентов регрессии методом наименьших квадратов и проверки статистических гипотез. Поведение графика остатков регрессии, как признак гетероскедастичности. Тесты Парка (Park), Глейзера (Glejser), Голдфелда-Квандта (Goldfeld-Quandt), Бройша-Пагана (Breusch-Pagan). Применение коэффициента ранговой корреляции по Спирмену для диагностирования гетероскедастичности.

XXIII. Взвешенный метод наименьших квадратов при известных дисперсиях случайных составляющих в различных наблюдениях. Взвешенный метод наименьших квадратов, как частный случай обобщенного метода наименьших квадратов (без доказательства). Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности при неизвестных дисперсиях случайных составляющих (feasable generalized least squares). Оценка неизвестных дисперсий по результатам тестов Парка и Глейзера. Оценка неизвестных дисперсий методом максимального правдоподобия.

XXIV. Понятие об автокорреляции случайной составляющей. Экономические причины автокорреляции. Инерция экономических показателей. Предварительная обработка первичных данных. "Паутинообразный" эффект. Кажущаяся автокорреляция при невключении в модель существенной переменной. Авторегрессионная схема 1-го порядка (марковская схема). Последствия неучета автокорреляции для свойств оценок коэффициентов регрессии, полученных методом наименьших квадратов. Графическое диагностирование автокорреляции. Тест серий (runs test). Статистика Дарбина-Уотсона (Durbin-Watson). Условия применимости статистики Дарбина-Уотсона для диагностирования автокорреляции (наличие в модели свободного члена, отсутствие лаговых переменных, первый порядок авторегрессионной схемы).

XXV. Обобщенный метод наименьших квадратов для оценки коэффициентов регрессии при наличии автокорреляции и известном значении параметра р. Преобразование исходных переменных, позволяющее применить метод наименьших квадратов. Поправка Прейса-Винстена (Prais-Winsten) для первого наблюдения. Совместное оценивание коэффициентов регрессии и параметра р при наличии автокорреляции. Оценка параметра автокорреляции по значению статистики Дарбина-Уотсона и коэффициенту авторегрессии остатков. Метод поиска на сетке Хилдрет-Лю (Hildreth-Lu grid search procedure). Итеративная процедура Кокрена-Оркутта (Cochrane-Orcutt). Двухшаговая процедура Кокрена-Оркутта. Двухшаговая процедура Дарбина. Использование статистики Томаса-Уоллиса (Thomas-Wallis) для обнаружения автокорреляции четвертого порядка (сезонной) в квартальных данных. Тест множителей Лагранжа (Lagrange multiplier test, LM-test, Breusch-Godfrey test) для обнаружения автокорреляции произвольного порядка.

XXVI. Проблема выбора "наилучшей" модели. Свойства, которыми должна обладать "хорошая" модель. Типы ошибок спецификации модели. Пропущенные и излишние переменные. Неправильная функциональная форма модели. Смещение в оценках коэффициентов, вызываемое невключением существенных переменных. Ухудшение точности оценок (увеличение оценок дисперсий) при включении в модель излишних переменных. Проверка гипотезы о группе излишних переменных (значимость уменьшения остаточной суммы квадратов). Статистика Дарбина-Уотсона для проверки гипотезы о существовании упущенных переменных. RESET тест Рамзея (Ramsey's RESET test) для проверки гипотезы о существовании упущенных переменных.

XXVII. Регрессионные динамические модели. Лаговые переменные и экономические зависимости между разновременными значениями переменных. Модель с распределенными лагами. Подход Тинбергена и Альта (Tinbergen and Alt) к оценке моделей с распределенными лагами. Преобразование Койка (Koyck). Авторегрессионные модели, как эквивалентное представление моделей с распределенными лагами. Линейная регрессия в случае стохастических регрессоров. Обобщение теоремы Гаусса-Маркова на случай стохастических регрессоров (без доказательства). Проверка гипотезы об отсутствии автокорреляции в авторегрессионных моделях с помощью h-статистики Дарбина.

ХХУIII. Ожидания (expectations) экономических агентов, как причина лаговых переменных в моделях. Модели наивных (naive) ожиданий. Модель адаптивных (adaptive) ожиданий и преобразование Койка. Оценка коэффициентов авторегрессионных моделей. Метод инструментальных переменных (instrumental variables, IV). Оценивание моделей с распределенными лагами методом поиска на сетке Модель гиперинфляции Кейгана (Cagan). Модель частичной подстройки (partial adjustment). Модель корректировки ошибок (error correction model, ECM).

XXIX. Оценка параметров функции потребления в рамках классического подхода по Кейнсу (Keynes) и в рамках теории перманентного дохода по Фридману (Friedman). Методология Давидсона (Davidson), Хендри (Hendry), Србы (Srba) и Йео (Yeo) на примере агрегированной функции потребления для Великобритании.

Литература

Основная литература

1. D. Gujarati. Essentials of econometrics. McGraw-Hill 1992
2. D. Gujarati. Basic econometrics. McGraw-Hill 1995
3. Шведов А. С. Теория вероятностей и математическая статистика. М. Издательство Высшей школы экономики, 1995
4. К. Доугерти. Введение в эконометрику. М., ИНФРА-М, 1997
5. Я. Магнус, П. Катышев, А. Пересецкий. Эконометрика. Начальный курс. М., Дело, 1997.
6. F. W. Haanappel. Introduction to econometrics I. Lecture notes. (Библиотека ВШЭ).
7. G. S. Maddala. Introduction to econometrics. Macmillan Publishing Co. 1992
8. Д.Джонстон. Эконометрические методы. М., Статистика, 1980

Hosted by uCoz